2026/1/10 9:09:00
网站建设
项目流程
网站建设与管理教学视频教程,上海名企,wordpress模板不显示文章页,女装网站建设的规划书13.5 扩散模型:前向过程、反向过程与得分匹配
扩散模型是当前生成式人工智能领域的核心范式之一,其灵感源于非平衡热力学,通过模拟数据在噪声空间中的扩散与逆扩散过程来学习数据分布[reference:0]。本节将系统阐述扩散模型的三个核心组成部分:前向扩散过程、反向生成过程…13.5 扩散模型:前向过程、反向过程与得分匹配扩散模型是当前生成式人工智能领域的核心范式之一,其灵感源于非平衡热力学,通过模拟数据在噪声空间中的扩散与逆扩散过程来学习数据分布[reference:0]。本节将系统阐述扩散模型的三个核心组成部分:前向扩散过程、反向生成过程以及作为其理论基石的得分匹配方法。13.5.1 前向过程:从数据分布到噪声分布前向过程是一个固定的马尔可夫链,其目的是将复杂的数据分布pdata(x0)p_{data}(\mathbf{x}_0)pdata(x0)通过逐步添加高斯噪声,渐近地转化为一个易于采样的简单先验分布(通常是标准高斯分布)。给定原始数据样本x0∼pdata\mathbf{x}_0 \sim p_{data}x0∼pdata,前向过程在TTT个时间步上定义。在离散时间设定下,每一步的转移概率定义为:q(xt∣xt−1)=N(xt;1−βtxt−1,βtI),t=1,…,T q(\mathbf{x}_t | \mathbf{x}_{t-1}) = \mathcal{N}(\mathbf{x}_t; \sqrt{1-\beta_t} \mathbf{x}_{t-1}, \beta_t \mathbf{I}), \quad t=1,\dots,Tq(xt∣xt−1)=N(xt;1−βtxt−1,βtI),t=1,…,T其中{ βt∈(0,1)}t=1T\{\beta_t \in (0,1)\}_{t=1}^{T}{βt∈(0,1)}t=1T是预先定义的噪声调度。该过程的一个关键特性是,由于高斯分布的可加性,我们可以通过重参数化技巧,直接从x0\mathbf{x}_0x0采样任意时间步ttt的加噪样本:xt=αˉtx0+1−αˉtϵ,ϵ∼N(0,I) \mathbf{x}_t = \sqrt{\bar{\alpha}_t} \mathbf{x}_0 + \sqrt{1-\bar{\alpha}_t} \epsilon, \quad \epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})xt=αˉtx0+1−αˉtϵ,ϵ∼N(0,I)这里,αt=1−βt\alpha_t = 1 - \beta_tαt=1−